Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtre
Ajouter des filtres

Base de données
Type de document
Gamme d'année
1.
biorxiv; 2021.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2021.01.31.429023

Résumé

Capping viral messenger RNAs is essential for efficient translation and prevents their detection by host innate immune responses. For SARS-CoV-2, RNA capping includes 2'-O-methylation of the first ribonucleotide by methyltransferase nsp16 in complex with activator nsp10. The reaction requires substrates, a short RNA and SAM, and is catalyzed by divalent cations, with preference for Mn2+. Crystal structures of nsp16-nsp10 with capped RNAs revealed a critical role of metal ions in stabilizing interactions between ribonucleotides and nsp16, resulting in precise alignment of the substrates for methyl transfer. An aspartate residue that is highly conserved among coronaviruses alters the backbone conformation of the capped RNA in the binding groove. This aspartate is absent in mammalian methyltransferases and is a promising site for designing coronavirus-specific inhibitors.

2.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.08.14.251421

Résumé

The genome of the SARS-CoV-2 coronavirus contains 29 proteins, of which 15 are nonstructural. Nsp10 and Nsp16 form a complex responsible for the capping of mRNA at the 5' terminus. In the methylation reaction the S-adenosyl-L-methionine serves as the donor of the methyl group that is transferred to Cap-0 at the first transcribed nucleotide to create Cap-1. The presence of Cap-1 makes viral RNAs mimic the host transcripts and prevents their degradation. To investigate the 2'-O methyltransferase activity of SARS-CoV-2 Nsp10/16, we applied fixed-target serial synchrotron crystallography (SSX) which allows for physiological temperature data collection from thousands of crystals, significantly reducing the x-ray dose while maintaining a biologically relevant temperature. We determined crystal structures of Nsp10/16 that revealed the states before and after the methylation reaction, for the first time illustrating coronavirus Nsp10/16 complexes with the m7GpppAm2'-O Cap-1, where 2'OH of ribose is methylated. We compare these structures with structures of Nsp10/16 at 297 K and 100 K collected from a single crystal. This data provide important mechanistic insight and can be used to design small molecules that inhibit viral RNA maturation making SARS-CoV-2 sensitive to host innate response.

3.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.08.03.234716

Résumé

There are currently no antiviral therapies specific against SARS-CoV-2, the virus responsible for the global pandemic disease COVID-19. To facilitate structure-based drug design, we conducted an X-ray crystallographic study of the nsp16/nsp10 2'-O-methyltransferase complex that methylates Cap-0 viral mRNAs to improve viral protein translation and to avoid host immune detection. Heterodimer structures are determined with the methyl donor S-adenosylmethionine (SAM), the reaction product S-adenosylhomocysteine (SAH) or the SAH analog sinefungin (SFG). Furthermore, structures of nsp16/nsp10 with the methylated Cap-0 analog (m7GpppA) and SAM or SAH bound were obtained. Comparative analysis revealed flexible loops in open and closed conformations at the m7GpppA binding pocket. Bound sulfates in several structures suggested the location of the phosphates in the ribonucleotide binding groove. Additional nucleotide binding sites were found on the face of the protein opposite the active site. These various sites and the conserved dimer interface could be exploited for development of antiviral inhibitors.


Sujets)
COVID-19
4.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.04.17.047498

Résumé

SARS-CoV-2 is a member of the coronaviridae family and is the etiological agent of the respiratory Coronavirus Disease 2019. The virus has spread rapidly around the world resulting in over two million cases and nearly 150,000 deaths as of April 17, 2020. Since no treatments or vaccines are available to treat COVID-19 and SARS-CoV-2, respiratory complications derived from the infections have overwhelmed healthcare systems around the world. This virus is related to SARS-CoV-1, the virus that caused the 2002-2004 outbreak of Severe Acute Respiratory Syndrome. In January 2020, the Center for Structural Genomics of Infectious Diseases implemented a structural genomics pipeline to solve the structures of proteins essential for coronavirus replication-transcription. Here we show the first structure of the SARS-CoV-2 nsp10-nsp16 2-O-methyltransferase complex with S-adenosylmethionine at a resolution of 1.80 [A]. This heterodimer complex is essential for capping viral mRNA transcripts for efficient translation and to evade immune surveillance.


Sujets)
Infections à coronavirus , Syndrome respiratoire aigu sévère , Maladies transmissibles , COVID-19
SÉLECTION CITATIONS
Détails de la recherche